Abstract

We consider the integration of one-dimensional highly oscillatory functions. Based on analytic continuation, rapidly converging quadrature rules are derived for a general class of oscillatory integrals with an analytic integrand. The accuracy of the quadrature increases both for the case of a fixed number of points and increasing frequency, and for the case of an increasing number of points and fixed frequency. These results are then used to obtain quadrature rules for more general oscillatory integrals, i.e., for functions that exhibit some smoothness but that are not analytic. The approach described in this paper is related to the steepest descent method, but it does not employ asymptotic expansions. It can be used for small or moderate frequencies as well as for very high frequencies. The approach is compared with the oscillatory integration techniques recently developed by Iserles and Norsett.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.