Abstract
Accurate algorithms are proposed for approximation of integrals involving highly oscillatory Bessel function of the first kind over finite and infinite domains. Accordingly, Bessel oscillatory integrals having high oscillatory behavior are transformed into oscillatory integrals with Fourier kernel by using complex line integration technique. The transformed integrals contain an inner non-oscillatory improper integral and an outer highly oscillatory integral. A modified meshfree collocation method with Levin approach is considered to evaluate the transformed oscillatory type integrals numerically. The inner improper complex integrals are evaluated by either Gauss–Laguerre or multi-resolution quadrature. Inherited singularity of the meshfree collocation method at x=0 is treated by a splitting technique. Error estimates of the proposed algorithms are derived theoretically in the inverse powers of ω and verified numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.