Abstract
This paper addresses the problem of determining robust stability regions for a class of nonlinear systems with time-invariant uncertainties subject to actuator saturation. The unforced nonlinear system is represented by differential-algebraic equations where the system matrices are allowed to be rational functions of the state and uncertain parameters, and the saturation nonlinearity is modelled by a sector bound condition. For this class of systems, local stability conditions in terms of linear matrix inequalities are derived based on polynomial Lyapunov functions in which the Lyapunov matrix is a quadratic function of the state and uncertain parameters. To estimate a robust stability region is considered the largest level surface of the Lyapunov function belonging to a given polytopic region of state. A numerical example is used to demonstrate the approach.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have