Abstract

For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and bound procedures, as an auxiliary tool meant to reduce the number of enumerated nodes. To this day, pure cutting plane methods alone have poor convergence properties and are typically not used in practice. Our reason for studying them is our belief that these negative properties can be understood and thus remedied only based on a thorough investigation of such procedures in their pure form. In this paper, the second in a sequence, we address some important issues arising when designing a computationally sound pure cutting plane method. We analyze the dual cutting plane procedure proposed by Gomory in 1958, which is the first (and most famous) convergent cutting plane method for integer linear programming. We focus on the enumerative nature of this method as evidenced by the relative computational success of its lexicographic version (as documented in our previous paper on the subject), and we propose new versions of Gomory’s cutting plane procedure with an improved performance. In particular, the new versions are based on enumerative schemes that treat the objective function implicitly, and redefine the lexicographic order on the fly to mimic a sound branching strategy. Preliminary computational results are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.