Abstract
This article considers the bilevel linear programming problem with interval coefficients in both objective functions. We propose a cutting plane method to solve such a problem. In order to obtain the best and worst optimal solutions, two types of cutting plane methods are developed based on the fact that the best and worst optimal solutions of this kind of problem occur at extreme points of its constraint region. The main idea of the proposed methods is to solve a sequence of linear programming problems with cutting planes that are successively introduced until the best and worst optimal solutions are found. Finally, we extend the two algorithms proposed to compute the best and worst optimal solutions of the general bilevel linear programming problem with interval coefficients in the objective functions as well as in the constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.