Abstract
In this paper, we propose a general framework to study the tradeoff between energy efficiency (EE) and spectral efficiency (SE) in massive multiple-input-multiple-output-enabled heterogenous networks while ensuring proportional rate fairness among users and taking into account the backhaul capacity constraint. We aim at jointly optimizing user association, spectrum allocation, power coordination, and the number of activated antennas, which is formulated as a multi-objective optimization problem maximizing EE and SE simultaneously. With the help of weighted Tchebycheff method, it is then transformed into a single-objective optimization problem, which is a mixed-integer non-convex problem and requires unaffordable computational complexity to find the optimum. Hence, a low-complexity effective algorithm is developed based on primal decomposition, where we solve the power coordination and number of antenna optimization problem and the user association and spectrum allocation problem separately. Both theoretical analysis and numerical results demonstrate that our proposed algorithm can fast converge within several iterations and significantly improve both the EE-SE tradeoff performance and rate fairness among users compared with other algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.