Abstract

Electropolishing of NiTi shape memory alloys is possible in methanolic 3 m H2SO4. The electro‐dissolution behavior of NiTi in methanolic 3 m H2SO4 is ascertained in terms of Nyquist plots using electrochemical impedance spectroscopy (EIS) under limiting current flow (mass transfer control) condition. The electro‐dissolution behavior is studied under convective conditions using a rotating disc electrode. The influence of changes in rotation rate, applied potential, and temperature are determined. This study demonstrates that electro‐dissolution under mass transfer condition follows a compact salt‐film mechanism. In order to quantitatively characterize the salt film formed during electropolishing, EIS is performed under stationary conditions. The increase in applied voltage causes an increase in polarization resistance and decrease in capacitance of the interface film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.