Abstract

We present a multiscale modelling approach to explore the effects of a non-uniform concentration of carbon nanotubes (CNTs) on the electrical conductivity of CNT-polymer composites. Realistic three-dimensional representative volume elements (RVEs) are generated from a two-dimensional CNT concentration map, obtained via microscopy techniques. The RVEs capture the measured probability density function of the CNT concentration and include a length-scale to represent the details of the spatial distribution of the concentration. The homogenized conductivity of the RVEs is computed via multiscale FE analyses for different values of such length-scale, and it is compared to measurements. The modelling strategy is then used to explore the effects of the microstructural features of these materials on their electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call