Abstract

The elastoviscoplastic behavior of the Ti5553 alloy is characterized and compared to the classical Ti-6Al-4V alloy. The true stress-strain curves are determined based on tensile tests performed under different strain rates at room temperature and at 150°C, from which the elastic constants and the parameters of a Norton-Hoff viscoplastic model are identified. The strength of the Ti5553 alloy is 20-40% higher than the strength of the Ti-6Al-4V alloy. The Ti5553 alloy constitutes thus a promising candidate for advanced structural applications. In view of modeling structural applications of forming operations, the elastic and plastic initial anisotropy of the two alloys is investigated by combining compression on cylinders with elliptical sections, uniaxial tensile tests in different material directions, plane strain and shear tests. The initial anisotropy of the different alloys is very weak which justifies the modeling of the mechanical behavior with an isotropic yield surface. The identified elastoviscoplastic model is validated by comparing experimental results with FE predictions both on cylindrical notched specimens subjected to tensile tests and on flat specimens subjected to plane strain conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.