Abstract
The significant scatter observed in the elongation to fracture of specimens taken from a single, industrially processed sheet for two Al alloys has been traced to changes in the value of the strain rate sensitivity index (m) and also to the specimen to specimen variation in the concentration and distribution of second phase particles/inclusions. It is shown that these three variables of m, second phase particle content and distribution affect the width of tear ridges, the size of clusters of grains that pull out as a whole during fracture, their connectivity and the extent to which cavitation can be suffered before final fracture. The consequences of these effects for specimen ductility are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.