Abstract
Graph neural network (GNN)-based graph learning has been popular in natural language and programming language processing, particularly in text and source code classification. Typically, GNNs are constructed by incorporating alternating layers which learn transformations of graph node features, along with graph pooling layers that use graph pooling operators (e.g., Max-pooling) to effectively reduce the number of nodes while preserving the semantic information of the graph. Recently, to enhance GNNs in graph learning tasks, Manifold-Mixup, a data augmentation technique that produces synthetic graph data by linearly mixing a pair of graph data and their labels, has been widely adopted. However, the performance of Manifold-Mixup can be highly affected by graph pooling operators, and there have not been many studies that are dedicated to uncovering such affection. To bridge this gap, we take an early step to explore how graph pooling operators affect the performance of Mixup-based graph learning. To that end, we conduct a comprehensive empirical study by applying Manifold-Mixup to a formal characterization of graph pooling based on 11 graph pooling operations (9 hybrid pooling operators, 2 non-hybrid pooling operators). The experimental results on both natural language datasets (Gossipcop, Politifact) and programming language datasets (JAVA250, Python800) demonstrate that hybrid pooling operators are more effective for Manifold-Mixup than the standard Max-pooling and the state-of-the-art graph multiset transformer (GMT) pooling, in terms of producing more accurate and robust GNN models.Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science Board.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.