Abstract
We analyse the representation of positive polynomials in terms of Sums of Squares. We provide a quantitative version of Putinar’s Positivstellensatz over a compact basic semialgebraic set S, with a new polynomial bound on the degree of the positivity certificates. This bound involves a Łojasiewicz exponent associated to the description of S. We show that if the gradients of the active constraints are linearly independent on S (Constraint Qualification condition), this Łojasiewicz exponent is equal to 1. We deduce the first general polynomial bound on the convergence rate of the optima in Lasserre’s Sum-of-Squares hierarchy to the global optimum of a polynomial function on S, and the first general bound on the Hausdorff distance between the cone of truncated (probability) measures supported on S and the cone of truncated pseudo-moment sequences, which are positive on the quadratic module of S.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.