Abstract

Let f , g i , i = 1 , … , l , h j , j = 1 , … , m , be polynomials on R n and S ≔ { x ∈ R n ∣ g i ( x ) = 0 , i = 1 , … , l , h j ( x ) ≥ 0 , j = 1 , … , m } . This paper proposes a method for finding the global infimum of the polynomial f on the semialgebraic set S via sum of squares relaxation over its truncated tangency variety, even in the case where the polynomial f does not attain its infimum on S . Under a constraint qualification condition, it is demonstrated that: (i) The infimum of f on S and on its truncated tangency variety coincide; and (ii) A sums of squares certificate for nonnegativity of f on its truncated tangency variety. These facts imply that we can find a natural sequence of semidefinite programs whose optimal values converge, monotonically increasing to the infimum of f on S .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.