Abstract
Effective densities derived from combined mobility and aerodynamic sizing provide a valuable tool for the characterization of non-spherical particles. Different effective densities have been introduced depending on the primary measurement parameters (mass, mobility and/or aerodynamic size) and the flow regime (transition, free-molecular). Here we explore the relationship between these effective densities, their physical interpretation and their dependence on particle shape, density and various equivalent diameters. We also provide an overview over the wide range of practical implications of the effective density concept with a particular focus on the characterization of particles with irregular or even unknown shape using commercially available instruments such as DMA, SMPS, FMPS, ELPI, APS, TEOM and multi-stage impactors. Finally, we identify new perspectives for particle characterization by extending the effective density concept into the free-molecular regime and by suggesting a triple-instrument approach for on-line determination of both particle density and shape as well as the dynamic shape factor for different flow regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.