Abstract

In several practical applications hot-finished steel pipe that exhibits Lüders bands is bent to strains of 2–3%. Lüders banding is a material instability that leads to inhomogeneous plastic deformation in the range of 1–4%. This work investigates the influence of Lüders banding on the inelastic response and stability of tubes under rotation controlled pure bending. Part I presents the results of an experimental study involving tubes of several diameter-to-thickness ratios in the range of 33.2–14.7 and Lüders strains of 1.8–2.7%. In all cases the initial elastic regime terminates at a local moment maximum and the local nucleation of narrow angled Lüders bands of higher strain on the tension and compression sides of the tube. As the rotation continues the bands multiply and spread axially causing the affected zone to bend to a higher curvature while the rest of the tube is still at the curvature corresponding to the initial moment maximum. With further rotation of the ends the higher curvature zone(s) gradually spreads while the moment remains essentially unchanged. For relatively low D/ t tubes and/or short Lüders strains, the whole tube eventually is deformed to the higher curvature entering the usual hardening regime. Subsequently it continues to deform uniformly until the usual limit moment instability is reached. For high D/ t tubes and/or materials with longer Lüders strains, the propagation of the larger curvature is interrupted by collapse when a critical length is Lüders deformed leaving behind part of the structure essentially undeformed. The higher the D/ t and/or the longer the Lüders strain is, the shorter the critical length. Part II presents a numerical modeling framework for simulating this behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.