Abstract

In an internal combustion engine, the centrifugal compressor is placed upstream of the inlet manifold and therefore, it is exposed an unsteady flow regime caused by the inlet valves of the cylinder arrangement. This valve motion sets a pulsating state at the compressor exit, having greater influence when the operation is near the surge margin of the compressor. This paper presents the experimental results of the evaluation of the surge dynamics on a compressor with induced downstream pulsating flow. Different pulsation levels are achieved by the variation of three different parameters on the induced pulse: pulse frequency, amplitude, and system storage volume (plenum). Each pulse parameter was evaluated independently in order to assess its effect on the compressor stability limit. The main effect on the surge margin of the compressor was found to be due to the presence of a storage volume in the system for all cases (steady/pulsating condition) and at all frequencies. It was found that the magnitude of the pulse frequency determines the hysteresis behavior of the system that leads to a phase difference between the convected terms and the acoustic dominated terms, and therefore this affects the onset of flow instability, surge, in the compression system under study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.