Abstract

This paper investigates the economics of a fuel cell bus fleet powered by hydrogen produced from electricity generated by a wind park in Austria. The main research question is to simultaneously identify the most economical hydrogen generation business model for the electric utility owning wind power plants and to evaluate the economics of operating a fuel cell bus fleet, with the core objective to minimize the total costs of the overall fuel supply (hydrogen production) and use (bus and operation) system. For that, three possible operation modes of the electrolyzer have been identified and the resulting hydrogen production costs calculated. Furthermore, an in-depth economic analysis of the fuel cell buses as well as the electrolyzer technology has been conducted. Results show that investment costs are the largest cost factor for both technologies. Thus, continuous hydrogen production with the smallest possible electrolyzer is the economically most favorable option. In such an operation mode (power grid), the costs of production per kg/H2 were the lowest. However, this means that the electrolyzer cannot be solely operated with electricity from the wind park, but is also dependent on the electricity mix from the grid. For fuel cell buses, the future cost development will depend very much on the respective policies and funding programs for the market uptake, as to date, the total cost of use for the fuel cell bus is more than two times higher than the diesel bus. The major final conclusion of this paper is that to make fuel cell electric busses competitive in the next years today severe policy interferences, such as subsidies for these busses as well as electrolyzers and bans for fossil energy, along with investments in the setup of a hydrogen infrastructure, are necessary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call