Abstract

The results of geophysical monitoring of seismically hazardous regions are of undoubted interest for studying the deep structure of the lithosphere, regional seismicity, modern geodynamics, etc. The work used experimental material, including the results of magnetotelluric monitoring and the catalogs of the KNET (Kyrgyzstan Telemetered Network), KRNET (Kyrgyz Republic Digital Network) and ISC (International Seismological Center) networks obtained in the seismically active zones of the Bishkek Geodynamic Proving Ground (Northern Tien Shan). The analysis of electromagnetic monitoring results of the Northern Tien Shan seismic generating zone was carried out in a wide frequency range. The data on the parameters of the electromagnetic field of the Earth’s crust in the Northern Tien Shan are generalized and systematized. Based on the analysis of these data, the dependence of the response of seismic events in electromagnetic parameters on the distance of earthquake epicenters was studied. The most likely reason for the occurrence of anomalous changes in the electromagnetic field is the activation of deformation processes during the preparation of strong earthquakes. The results of the time-frequency analysis are presented and the features of manifestation are considered depending on the location of the hypoand epicenters of seismic events and their magnitude. Regularities have been established in the behavior of tipper variations for remote and regional earthquakes for the first quarter of 2016 with an energy class from 6 to 10.

Highlights

  • The results of geophysical monitoring of seismically hazardous regions are of undoubted interest for studying the deep structure of the lithosphere, regional seismicity, modern geodynamics, etc

  • One of the most urgent problems of modern geodynamics is to identify the connection between variations in geophysical fields with seismic processes occurring in the Earth's crust [1,2,3]

  • The solution to this problem for the Northern Tien Shan is based on a complex of studies on the territory of the Bishkek Geodynamic Proving Ground (BGPG) (Northern Tien Shan)

Read more

Summary

Introduction

The results of geophysical monitoring of seismically hazardous regions are of undoubted interest for studying the deep structure of the lithosphere, regional seismicity, modern geodynamics, etc. On the territory of the BGPG, a sufficiently large experience has been accumulated in conducting monitoring magnetotelluric (MT) observations in order to study the geodynamic processes occurring deep in the Earth in connection with the preparation of seismic events [4,5,6,7,8].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call