Abstract

A high-resolution numerical ocean circulation model of the Bering Sea (BS) is used to study the natural variability of the BS straits. Three distinct categories of strait dynamics have been identified: (1) Shallow passages such as the Bering Strait and the Unimak Passage have northward, near barotropic flow with periodic pulses of larger transports; (2) wide passages such as Near Straits, Amukta Pass, and Buldir Pass have complex flow patterns driven by the passage of mesoscale eddies across the strait; and (3) deep passages such as Amchitka Pass and Kamchatka Strait have persistent deep return flows opposite in direction to major surface currents; the deep flows persist independent of the local wind. Empirical orthogonal function analyses reveal the spatial structure and the temporal variability of strait flows and demonstrate how mesoscale variations in the Aleutian passages influence the Bering Strait flow toward the Arctic Ocean. The study suggests a general relation between the barotropic and baroclinic Rossby radii of deformations in each strait, and the level of flow variability through the strait, independent of geographical location. The mesoscale variability in the BS seems to originate from two different sources: a remote origin from variability in the Alaskan Stream that enters the BS through the Aleutian passages and a local origin from the interaction of currents with the Bowers Ridge in the Aleutian Basin. Comparisons between the flow in the Aleutian passages and flow in other straits, such as the Yucatan Channel and the Faroe Bank Channel, suggest some universal topographically induced dynamics in strait flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.