Abstract
The 4th International Workshop on Modeling the Ocean (IWMO; http://www.jamstec.go.jp/frcgc/jcope/htdocs/e/ iwmo2012.html) was held on May 21–24, 2012 in the vibrant city of Yokohama on the Tokyo Bay, Japan. TheWorkshop was hosted by Japan Agency for Marine-Earth Science and Technology (JAMSTEC)—the home of the famous “Earth Simulator”—one of the world's most powerful supercomputers dedicated for simulating the complex interactive processes of the earth and its environment. Over 100 researchers worldwide participated in the Workshop, which included two keynote lecturers, by Professor Mellor of Princeton University and Professor Yamagata of the University of Tokyo, and more than 80 oral presentations and 20 posters. The topics covered in the Workshop, as in the past IWMO's, are wide-ranging, from small-scale waves and estuarine processes to large-scale eddy and multi-decadal climate dynamics. In part thanks to the generosity of the host, a new record of 30 graduate students and postdocs participated in the Outstanding Young Scientist Award Competition, some with truly outstanding presentations of top scientific rigors. The collection of 11 papers in this Topical Collection was selected from a total of 22 originally submitted after they underwent the usual process of reviews and revisions. There were at least two reviewers for each paper, but a few submissions had more. The reviews were solicited from both the Workshop attendees and the scientific community at large. The subjects of papers in this Topical Collection include two on regional processes (Ezer and Oey 2013; Miyama and Miyazawa 2013), three on surface and upper-layer physics (Goh and Noh 2013; Mellor 2013; Ponte and Klein 2013), one on global modeling (Exarchou et al. 2012), three on coastal processes (Gao et al. 2013; Lu et al. 2013; Wang et al. 2013a), and two on analyses of model outputs (Wang et al. 2013b; Wu and Wang 2013). Ezer and Oey (2013) use the results of high-resolution numerical experiments based on the Princeton Ocean Model (POM) of the Bering Sea (Ezer and Oey 2010) to study the dynamics of strait flows. Three distinct categories of strait dynamics are identified: shallow passages with near barotropic flows, wide passages which are driven bymesoscale eddies, and deep passages which have persistent baroclinic currents with deep return flows. Universal relations are found between the radius of deformation of each strait and the observed variability. Empirical Orthogonal Function (EOF) analyses reveal the spatial structure and forcing of the strait flows. The model shows that mesoscale variability in the Bering Sea originate from two Responsible Editor: Jorg-Olaf Wolff
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.