Abstract
The main purpose of this paper is to investigate nonlinear oscillations of the gravitational dipole in a neighborhood of its nominal mode. The orbit of the center of mass is assumed to be circular or elliptic with small eccentricity. Consideration is given both to planar and arbitrary spatial deviations of the gravitational dipole from its position corresponding to the nominal mode. The analysis is based on the classical Lyapunov and Poincaré methods and the methods of Kolmogorov – Arnold – Moser (KAM) theory. The necessary calculations are performed using computer algorithms. An analytic representation is given for conditionally periodic oscillations. Special attention is paid to the problem of the existence of periodic motions of the gravitational dipole and their Lyapunov stability, formal stability (stability in an arbitrarily high, but finite, nonlinear approximation) and stability for most (in the sense of Lebesgue measure) initial conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.