Abstract
We investigate discrete-time dynamical systems generated by an infinite-dimensional nonlinear operator that maps the Banach space $l_{1}$ to itself. It is demonstrated that this operator possesses up to seven fixed points. By leveraging the specific form of our operator, we illustrate that analyzing the operator can be simplified to a two-dimensional approach. Subsequently, we provide a detailed description of all fixed points, invariant sets for the two-dimensional operator and determine the set of limit points for its trajectories. These results are then applied to find the set of limit points for trajectories generated by the infinite-dimensional operator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.