Abstract

This paper analyzes the flow of the contents of interleaved buffers with continuously operating machines in a mass production line. Under this framework, the products to be manufactured advance from station to station to receive a physical–chemical transformation that adds value as they progress in the process. The existence of decoupling buffers between operations (between two consecutive workstations) is a common practice in order to alleviate the pressure that is ahead due to the lack of synchronization between consecutive operations, which causes leisure and/or bottlenecks in the system. In this proposal, we analyze the dynamics of a mass manufacturing line with intermediate decoupling buffers. To do that, we use a regenerative stochastic process approach to build a model where the products stored in each buffer are taken all at once by the consecutive machine. In a second approach, we use a homogeneous birth–death process with constant input–output and assume that the products are taken one by one by the consecutive machine. Finally, we use a non-homogeneous birth–death process to analyze the dynamics of a system whose inputs and outputs depend on time. These proposals are accompanied by numerical examples that illustrate its practical utility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.