Abstract
In this paper, an effective hybrid discrete differential evolution (HDDE) algorithm is proposed to minimize the maximum completion time (makespan) for a flow shop scheduling problem with intermediate buffers located between two consecutive machines. Different from traditional differential evolution algorithms, the proposed HDDE algorithm adopted job permutation to represent individuals and applies job-permutation-based mutation and crossover operations to generate new candidate solutions. Moreover, a one-to-one selection scheme with probabilistic jumping is used to determine whether the candidates will become members of the target population in next generation. In addition, an efficient local search algorithm based on both insert and swap neighborhood structures is presented and embedded in the HDDE algorithm to enhance the algorithm’s local searching ability. Computational simulations and comparisons based on the well-known benchmark instances are provided. It shows that the proposed HDDE algorithm is not only capable to generate better results than the existing hybrid genetic algorithm and hybrid particle swarm optimization algorithm, but outperforms two recently proposed discrete differential evolution (DDE) algorithms as well. Especially, the HDDE algorithm is able to achieve excellent results for large-scale problems with up to 500 jobs and 20 machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.