Abstract

Abstract. The increasing diversity and resolution of spatially distributed data on terrestrial systems greatly enhance the potential of hydrological modeling. Optimal and parsimonious use of these data sources requires, however, that we better understand (a) which system characteristics exert primary controls on hydrological dynamics and (b) to what level of detail do those characteristics need to be represented in a model. In this study we develop and test an approach to explore these questions that draws upon information theoretic and thermodynamic reasoning, using spatially distributed topographic information as a straightforward example. Specifically, we subdivide a mesoscale catchment into 105 hillslopes and represent each by a two-dimensional numerical hillslope model. These hillslope models differ exclusively with respect to topography-related parameters derived from a digital elevation model (DEM); the remaining setup and meteorological forcing for each are identical. We analyze the degree of similarity of simulated discharge and storage among the hillslopes as a function of time by examining the Shannon information entropy. We furthermore derive a “compressed” catchment model by clustering the hillslope models into functional groups of similar runoff generation using normalized mutual information (NMI) as a distance measure. Our results reveal that, within our given model environment, only a portion of the entire amount of topographic information stored within a digital elevation model is relevant for the simulation of distributed runoff and storage dynamics. This manifests through a possible compression of the model ensemble from the entire set of 105 hillslopes to only 6 hillslopes, each representing a different functional group, which leads to no substantial loss in model performance. Importantly, we find that the concept of hydrological similarity is not necessarily time invariant. On the contrary, the Shannon entropy as measure for diversity in the simulation ensemble shows a distinct annual pattern, with periods of highly redundant simulations, reflecting coherent and organized dynamics, and periods where hillslopes operate in distinctly different ways. We conclude that the proposed approach provides a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time. Our approach is neither restricted to the model nor to model targets or the data source we selected in this study. Overall, we propose that the concepts of hydrological systems acting similarly (and thus giving rise to redundancy) or displaying unique functionality (and thus being irreplaceable) are not mutually exclusive. They are in fact of complementary nature, and systems operate by gradually changing to different levels of organization in time.

Highlights

  • 1.1 MotivationThis paper addresses the following question

  • Within our given model environment, only a portion of the entire amount of topographic information stored within a digital elevation model is relevant for the simulation of distributed runoff and storage dynamics

  • GRASS GIS (Neteler et al, 2012) was used to subdivide the catchment into 105 hillslopes (Fig. 1a) using a classical hydrological terrain analysis algorithm r.watershed. This approach generates a stream network after the user sets a threshold for the minimum size of an exterior watershed basin. We identified this value by varying this threshold across a range of values trying to reproduce the official stream network which was available from the Luxembourg Institute of Science and Technology (LIST) by visual inspection

Read more

Summary

Introduction

R. Loritz et al.: On the dynamic nature of hydrological similarity to say that attempts to address the question still lie at the heart of every distributed model application (Beven, 1989; Freeze and Harlan, 1969; Refsgaard, 1997; Hrachowitz and Clark, 2017a). Streamflow generation is driven by differences in potential energy between the upslope catchment areas and the stream channel The majority of this available energy is dissipated during runoff concentration and infiltration, while the remaining part is exported from the catchment as the kinetic energy of streamflow (Kleidon et al, 2013). No consensus has yet emerged as to whether this statement is generally valid, and no guidelines exist regarding under which conditions the use of information regarding the spatially distributed nature of rainfall becomes inevitable (Emmanuel et al, 2015)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call