Abstract

Fragmentation of blocks upon impact is commonly observed during rockfall events. Nevertheless, fragmentation is not properly taken into account in the design of protection structures because it is still poorly understood. This paper presents an extensive and rigorous experimental campaign that aims at bringing insights into the understanding of the complex phenomenon of rock fragmentation upon impact. A total of 114 drop tests were conducted with four diameters (50, 75, 100, and 200 mm) of rock-like spheres (made of mortar) of three different strengths (34, 23 and 13 MPa), falling on a horizontal concrete slab, with the objective to gather high-quality fragmentation data. The analysis focuses on the fragment size distribution, the energy dissipation mechanisms at impact and the distribution of energy amongst fragments after impact. The results show that the fragment size distributions obtained in this campaign are not linear on a logarithmic scale. The total normalised amount of energy loss during the impact increases with impact velocity, and consequently the total kinetic energy after impact decreases. It was also found that energy loss to create the fracture surfaces is a constant fraction of the kinetic energy before impact. The trajectories of fragments are related to the impact velocity. At low impact velocity, the fragments tend to bounce but, as the impact velocity increases, they tend to be ejected sideways. Although testing mortar spheres in normal impact is a simplification, the series of tests presented in this work has brought some valuable understanding into the fragmentation phenomenon of rockfalls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call