Abstract

In [1] we construct aperiodic tile sets on the Baumslag-Solitar groups BS(m,n). Aperiodicity plays a central role in the undecidability of the classical domino problem on Z2, and analogously to this we state as a corollary of the main construction that the Domino problem is undecidable on all Baumslag-Solitar groups. In the present work we elaborate on the claim and provide a full proof of this fact. We also provide details of another result reported in [1]: there are tiles that tile the Baumslag-Solitar group BS(m,n) but none of the valid tilings is recursive. The proofs are based on simulating piecewise affine functions by tiles on BS(m,n).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.