Abstract
Пусть {λ n 1 t8 — монотонн ая последовательнос ть натуральных чисел. Дл я каждой функции feL(0, 2π) с рядом Фурье строятся обобщенные средние Bалле Пуссена $$V_n^{(\lambda )} (f;x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{k = 1}^n (a_k \cos kx + b_k \sin kx) + \mathop \sum \limits_{k = n + 1}^{n + \lambda _n } \left( {1 - \frac{{k - n}}{{\lambda _n + 1}}} \right)\left( {a_k \cos kx + b_k \sin kx} \right).$$ Доказываются следую щие теоремы. 1. Если λn=o(n), то существуе т функция feL(0, 2π), для кот орой последовательность {Vn (λ)(ƒ;x)} расходится почти вс юду. 2. Если λn=o(n), то существуе т функция feL(0, 2π), для кот орой последовательность $$\left\{ {\frac{1}{\pi }\mathop \smallint \limits_{ - \pi /\lambda _n }^{\pi /\lambda _n } f(x + t)\frac{{\sin (n + \tfrac{1}{2})t}}{{2\sin \tfrac{1}{2}t}}dt} \right\}$$ расходится почти всю ду .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.