Abstract

AbstractWe establish an asymptotic formula describing the horizontal distribution of the zeros of the derivative of the Riemann zeta-function. For ℜ(s) = σ satisfying (log T)−1/3+ε ⩽ (2σ − 1) ⩽ (log log T)−2, we show that the number of zeros of ζ′(s) with imaginary part between zero and T and real part larger than σ is asymptotic to T/(2π(σ−1/2)) as T → ∞. This agrees with a prediction from random matrix theory due to Mezzadri. Hence, for σ in this range the zeros of ζ′(s) are horizontally distributed like the zeros of the derivative of characteristic polynomials of random unitary matrices are radially distributed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.