Abstract

We argue that the freezing transition scenario, previously explored in the statistical mechanics of 1/f-noise random energy models, also determines the value distribution of the maximum of the modulus of the characteristic polynomials of large N×N random unitary matrices. We postulate that our results extend to the extreme values taken by the Riemann zeta function ζ(s) over sections of the critical line s=1/2+it of constant length and present the results of numerical computations in support. Our main purpose is to draw attention to possible connections between the statistical mechanics of random energy landscapes, random-matrix theory, and the theory of the Riemann zeta function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.