Abstract

<abstract><p>Let $ \mathbb{Z}^2 $ be the two-dimensional integer lattice. For an integer $ k\geq 2 $, we say a non-zero lattice point in $ \mathbb{Z}^2 $ is $ k $-full if the greatest common divisor of its coordinates is a $ k $-full number. In this paper, we first prove that the density of $ k $-full lattice points in $ \mathbb{Z}^2 $ is $ c_k = \prod_{p}(1-p^{-2}+p^{-2k}) $, where the product runs over all primes. Then we show that the density of $ k $-full lattice points on a path of an $ \alpha $-random walk in $ \mathbb{Z}^2 $ is almost surely $ c_k $, which is independent on $ \alpha $.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.