Abstract

Two novel analytical solutions to the damped Gardner Kawahara equation and its related equations are reported. Using a suitable ansatz and with the help of the exact solutions of the undamped Gardner Kawahara equation, two general high-accurate approximate analytical solutions are derived. Moreover, the Crank–Nicolson implicit finite difference method is introduced for analyzing the evolution equation numerically. The comparison between the obtained solutions is examined. All the obtained solutions are able to investigate many types of the dissipative traveling wave solutions such as the dissipative solitary and cnoidal waves. Also, the obtained solutions help many researchers understand the mechanisms underlying a variety of nonlinear phenomena that can propagate in optical fiber, physics of plasmas, fluid mechanics, water tank, oceans, and seas. The obtained solutions could be applied for investigating the characteristics of the dissipative higher-order solitary and cnoidal waves in electronegative plasmas. Numerical results depending on the physical plasma parameters are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.