Abstract

We derive here a relatively simple expression for the total wind mass loss rates in QSOs within the accretion disk wind scenario. We show that the simple expression derived here for QSO disk wind mass loss rate is in a very good agreement with the more “exact” values obtained through significantly more complex and detailed numerically intensive 2.5D time-dependent simulations. Additionally we show that for typical QSO parameters, the disk itself will be emitting mostly in the UV/optical spectrum, in turn implying that the X-ray emission from QSOs likely is produced through some physical mechanism acting at radii smaller than the inner disk radius (for a standard accretion disk, half of the initially gravitational potential energy of the accreting disk mass is emitted directly by the disk, while the other half “falls” closer towards the black hole than the inner disk radius). We also show that for typical QSO parameters, the disk itself is dominated by continuum radiation pressure (rather than thermal pressure), resulting in a “flat disk” (except for the innermost disk regions).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.