Abstract
This paper considers the solution of a deterministic queueing system. In this system, the single server provides service in bulk with a threshold for the acceptance of customers into service. Analytic results are given for the steady-state probabilities of the number of customers in the system and in the queue for random and pre-arrival epochs. The solution of this system is a prerequisite to a four-point approximation to the model GI/G a,b /1. The paper demonstrates that the solution of such a system is not a trivial problem and can produce interesting results. The graphical solution discussed in the literature requires that the traffic intensity be a rational number. The results so generated may be misleading in practice when a control policy is imposed, even when the probability distributions for the interarrival and service times are both deterministic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.