Abstract
In this paper, we consider a queue where the inter-arrival times are correlated and, additionally, service times are also correlated with inter-arrival times. We show that the resulting model can be interpreted as an MMAP[K]/PH[K]/1 queue for which matrix geometric solution algorithms are available. The major result of this paper is the presentation of approaches to fit the parameters of the model, namely the MMAP, the PH distribution and the parameters introducing correlation between inter-arrival and service times, according to some trace of inter-arrival and corresponding service times. Two different algorithms are presented. The first algorithm is based on available methods to compute a MAP from the inter-arrival times and a PH distribution from the service times. Afterward, the correlation between inter-arrival and service times is integrated by solving a quadratic programming problem over some joint moments. The second algorithm is of the expectation maximization type and computes all parameters of the MAP and the PH distribution in an iterative way. It is shown that both algorithms yield sufficiently accurate results with an acceptable effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.