Abstract

Let G be a connected graph and η(G)=Sz(G)−W(G), where W(G) and Sz(G) are the Wiener and Szeged indices of G, respectively. A well-known result of Klavžar, Rajapakse, and Gutman states that η(G)≥0, and by a result of Dobrynin and Gutman η(G)=0 if and only if each block of G is complete. In this paper, a path-edge matrix for the graph G is presented by which it is possible to classify the graphs in which η(G)=2. It is also proved that there is no graph G with the property that η(G)=1 or η(G)=3. Finally, it is proved that, for a given positive integer k,k≠1,3, there exists a graph G with η(G)=k.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.