Abstract

This paper describes the influence of dynamic tension/compression loading on notched and unnotched nylon specimens fabricated by Injection Molding (IM) and Selective Laser Sintering (SLS). The main objective of this work is to analyze and describe the differences in material structure and fatigue properties of as-built nylon parts produced by IM and SLM from the same polyamide 12 powder. The differences in dimensional quality, density, surface roughness, crystal structure and crystallinity are systematically measured and linked to the mechanical fatigue properties. The fatigue properties of the unnotched SLS specimens are found to be equal to those of the unnotched IM specimens. The presence of pores in the sintered samples does not lead to rapid failure, and the microvoid coalescence failure mechanism is delayed. The notched specimens show more brittle failure and increased fatigue resistance which is caused by local notch-strengthening. The results enable improved understanding of the difference in material structure and fatigue behavior of selective laser sintered and injection molded polyamide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call