Abstract

This article describes the development of elastic and plastic constitutive relations as functions of relative density for partially consolidated —100 mesh aluminum powder. First, measurements of yield stress as a function of stress state and relative density are described. Measurements of the plastic strain increments associated with yielding in unconstrained compression tests and elastic properties, both as functions of relative density, are also described. The experimental results are combined with the associated flow rule to show that the yield surface is asymmetric with respect to hydrostatic tension and compression. Second, it is shown that the yield stress results can be represented by a two-part (capped Drucker-Prager) yield surface. The consoli-dation yield surface moves along the hydrostatic stress axis during densification, while the shear yield surface approaches the Mises yield surface. For the Al powder used in the present inves-tigation, superposition of shear stress on a hydrostatic stress state aids the densification process. However, the hydrostatic stress requirement was found to be reduced by only about 20 pct for relative densities below 0. 98.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.