Abstract

AbstractIdentifiability and sensitivity of thermal boundary coefficients identified alongside thermal material parameters by means of full field measurements during a simple tension test are shown empirically using a simple tension test with self heating as a proof of concept. The identification is started for 10 different initial guesses, all of which converge toward the same optimum. The solution appears to be locally unique and parameters therefore independent, but a comparison against a reference solution indicates high correlation between three model parameters and the prescribed external temperatures required to model heat exchange with either air or clamping jaws. This sensitivity is further analyzed by rerunning the identification with different prescribed external temperatures and by comparing the obtained optimal parameter values. Although the model parameters are independent, optimal values for heat conduction and the heat transfer coefficients are highly correlated as well as sensitive with respect to a change, respectively, measurement error of the external temperatures. A precise fit on the basis of a simple tension test therefore requires precise measurements and a suitable material model which is able to accurately predict dissipated energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call