Abstract
The main objective of this work is to experimentally and numerically evaluate the macro-performance of the automotive TWIP (twinning induced plasticity) sheet in conjunction with formability. In order to characterize the mechanical properties, the simple tension and compression tests were performed for anisotropic properties, while the strain rate test was carried out to evaluate strain rate sensitivity. The forming limit diagram was measured and incorporated into the simulation program, while the theoretical prediction of the diffuse and localized necking was also carried out utilizing Hill’s and the M–K theories as well as Dorn’s and Swift’s diffuse theories. Note that the generalized criteria of Hill’s, Dorn’s and Swift’s theories were derived for general anisotropic sheets as well in this work. For numerical simulations, the anisotropic yield functions Yld2000-2d and Hill48 as well as the isotropic Mises yield function were selectively applied along with the isotropic hardening law. Formability verification was performed, utilizing Yld2000-2d, for the hemispherical dome stretching, notch and simple tension tests with specimens selectively prepared by milling and punching, while anisotropic properties were verified through the three point bending and cylindrical cup drawing tests, comparing the performance of the three yield functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.