Abstract

The use of time-dependent density functional theory (TDDFT) is considered for the determination of electronic excitation energies. Using beryllium and methylene as examples, we highlight (i) problems with Rydberg excitations arising from neglect of the integer discontinuity in the potential; (ii) the absence of pure double excitations in calculations using conventional exchange-correlation functionals; (iii) quantitative differences between excitation energies determined using TDDFT and the ‘delta SCF’ method; (iv) non-additivity of excitation energies calculated using TDDFT from different electronic states; (v) an apparent failure to predict single excitations to states that are lower than the reference states and (vi) the difference in quality between excitations to singlet and triplet states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.