Abstract
Robotic agents can greatly be benefited from the integration of perceptual learning in order to monitor and adapt to changing environments. To be effective in complex unstructured environments, robots have to perceive the environment and adapt accordingly. In this paper it is discussed a biology inspired approach based on the adaptive resonance theory (ART) and implemented on an KUKA KR15 industrial robot during real-world operations (e.g. assembly operations). The approach intends to embed naturally the skill learning capability during manufacturing operations (i.e., within a flexible manufacturing system). The integration of machine vision and force sensing has been useful to demonstrate the usefulness of the cognitive architecture to acquire knowledge and to effectively use it to improve its behaviour. Practical results are presented, showing that the robot is able to recognise a given component and to carry out the assembly. Adaptability is validated by using different component geometry during assemblies and also through skill learning which is shown by the robot’s dexterity.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have