Abstract
Nitrogen and carbon oxides (CO, NO and NO2), released from combustion facilities and automobiles, are known to be extremely harmful to the human body and also are the main cause of air pollution. Therefore, effective methods to monitor and suppress the carbon and nitrogen oxides have been highly demanded for atmospheric environmental measurements and controls. It is known that molybdenum oxide (MoO3) can be a good semiconductor material for use as a gas sensor in monitoring CO, NO and NO2. In this paper we report the structural characteristics and sensing properties of the sputtered MoO3 thin films as a function of argon gas flow. MoO3 thin films were deposited by DC reactive magnetron sputtering technique on glass substrates at different argon gas flows in the range of 5–20sccm. X-ray diffraction (XRD) analysis was used for studying crystallographic structure. XRD results showed that all of our films were of polycrystalline structure and of α-MoO3 stable orthorhombic phase. Results also showed that crystallite size increases while compressive nano-strain in the structure of the films decreases with increasing the argon gas flow. Atomic force microscope and the field emission scanning electron microscope studies showed granular structures for all samples, which increased in size consistent with the XRD results, with argon gas flow, while the surface roughness of the films also increased with argon gas flow. Chemical composition study showed optimum reaction between oxygen and molybdenum atoms for films produced at 15sccm flow of argon gas. The electrical response of samples was measured in the vacuum and the CO environments in the temperature range of 150–350K. All samples showed Ohmic behavior and the electrical resistances of the films measured in the CO environment were lower than those measured in vacuum. This study showed that the sensing ability of MoO3 for CO improves with increasing the argon gas flow.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have