Abstract
AbstractWe continue the investigation of the cycle polytope of a digraph begun by Balas and Oosten (Networks 36 (2000), 34–46) and derive a rich family of facets that cut off the origin and are not related to facets of the traveling salesman polytope. This disproves a claim in (Balas and Oosten 36 (2000), 34–46) that the only such facets are those defined by the linear ordering inequalities. After examining the relationship between the cycle polytope, its dominant, and the upper cycle polyhedron, we turn to the polar relationship between cycles and permutations or transitive tournaments. Our central result is a characterization of the relationship between facets of the dominant of the cycle polytope, facets of the cycle polytope that cut off the origin, and vertices of the linear relaxation of the transitive tournament polytope. © 2009 Wiley Periodicals, Inc. NETWORKS, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.