Abstract

Changes in precipitation frequency and intensity distribution over Africa will have a direct impact on dry spells and, therefore, will affect various climate sensitive sectors. In this study, the ability of the fifth generation of the Canadian Regional Climate Model (CRCM5) in simulating annual and seasonal dry spell characteristics is assessed for four precipitation thresholds (0.5 mm, 1 mm, 2 mm and 3 mm) over Africa. The dry spell characteristics considered are the number of dry days, number of dry spells and five-year return levels of maximum dry spell durations. The performance errors are assessed by comparing ERA-Interim driven CRCM5 with the Global Precipitation Climatology Project (GPCP) dataset, for the common 1997–2008 period. Lateral boundary forcing errors, i.e., errors in the CRCM5 simulation created by errors in the driving Canadian Earth System model (CanESM2) data—as well as the added value—of CRCM5 over CanESM2 are also assessed for the current climate. This is followed by an assessment of projected changes to dry spell characteristics for two future climates (2041–2070 and 2071–2100) simulated by both CRCM5 driven by CanESM2 and CanESM2 itself, for Representative Concentration Pathway (RCP) 4.5. Results suggest that CRCM5 driven by ERA-Interim has a tendency to overestimate the annual mean number of dry days and the five-year return level of the maximum dry spell duration in a majority of the regions while it slightly underestimates the number of dry spells. In general, the CRCM5 performance errors associated with the annual and seasonal dry spell characteristics are found to be larger in magnitude compared to the lateral boundary forcing errors. Projected changes to the dry spell characteristics for the 2041–2070 and 2071–2100 periods, with respect to the 1981–2010 period suggests significant changes in the tropics, with the mean number of dry days and the five-year return levels of maximum dry spell duration increasing, while the mean number of dry spell days decreases.

Highlights

  • According to the Intergovernmental Panel on Climate Change (IPCC) [1], Africa is one of the most vulnerable continents to climate change and climate variability

  • Though the CRCM5 simulation spans the 1951–2100 period, this study focuses on the current

  • The lowest values of annual number of dry days in the 120–240 days range is located in the Democratic Republic of Congo, along the South-East coast of Africa and in the mountainous regions of the eastern

Read more

Summary

Introduction

According to the Intergovernmental Panel on Climate Change (IPCC) [1], Africa is one of the most vulnerable continents to climate change and climate variability. 2–7 °C for Africa by the end of the 21st century This warming is non-uniform, with the drier subtropical regions projected to experience warmer temperatures than the moist tropical region. As for precipitation, annual amounts are expected to decrease in parts of Africa above 20°N and below 25°S, while an increase is expected in the Horn of Africa. For regions such as Sahel and the Guinean coast, annual and seasonal mean precipitation show no clear signal [1]. For most parts of Africa, agriculture is predominantly rain fed and very vulnerable to changes in precipitation

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call