Abstract

Starting from the basic conservation laws of fluid flow, we investigated transition and breakdown to turbulence of a laminar flat plate boundary layer exposed to small, statistically stationary, two-component, three-dimensional disturbances. The derived equations for the statistical properties of the disturbances are closed using the two-point correlation technique and invariant theory. By considering the equilibrium solutions of the modeled equations, the transition criterion is formulated in terms of a Reynolds number based on the intensity and the length scale of the disturbances. The deduced transition criterion determines conditions that guarantee maintenance of the local equilibrium between the production and the viscous dissipation of the disturbances and therefore the laminar flow regime in the flat plate boundary layer. The experimental and numerical databases for fully developed turbulent channel and pipe flows at different Reynolds numbers were utilized to demonstrate the validity of the derived transition criterion for the estimation of the onset of turbulence in wall-bounded flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.