Abstract
In this feasibility study the tomographic PIV technique has been applied to time resolved PIV recordings for the study of the growth of a turbulent spot in a laminar flat plate boundary layer and to visualize the topology of coherent flow structures within a tripped turbulent flat plate boundary layer flow. The experiments are performed around (Re x )1/2 ≈ 450 in a low speed wind-tunnel using four high speed CMOS cameras operating up to 5 kHz. The volume illumination required a multiple-reflection system able to intensify light intensity within the measurement volume. This aspect is deemed essential when a high-speed tomographic PIV system is applied in air flows. The particle image recordings are used for a three dimensional tomographic reconstruction of the light intensity distribution within the illuminated volume. Each pair of reconstructed three-dimensional light distributions is analyzed by 3D spatial cross-correlation using iterative multi-grid schemes with volume-deformation, yielding a correlated time sequence of three-dimensional instantaneous velocity vector volumes. The coherent structures organization is analyzed by 3D-vorticity and -swirling-strength iso-surfaces visualization. In both flow types streaks and hairpin-like or arch vortical structures are most prominent. The data gives insight into the role of these structures for the spatio-temporal arrangement of the wall normal flow exchange mechanisms, especially of the instantaneous Reynolds stress events Q2 and Q4. A description of different self-sustainable flow organizations based on modifications of the hairpin-vortex- and streak-models is given. Two preliminary results are essential: Self-sustainability of a coherent vortical structure depends on the ability to entrain high momentum fluid, initially Q4. And, stream-wise swirl at the near-wall region of arch or hairpin-like vortices has been observed to be rare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.