Abstract
Shaviv [New Astron. 8 (2003) 39; J. Geophys. Res. 108 (2003) 3] has shown evidence for a correlation between variations in the Galactic cosmic ray flux reaching Earth and the glaciation period record on Earth during the last 2 Gyr. If the flux of cosmic rays is mainly the result of Type II supernovae, an additional correlation between the star formation history of the Solar Neighbourhood and the timing of past ice ages is expected. Higher star formation rate implies increased cosmic ray flux and this may translate into colder climate through a rise in the average low altitude cloud cover. Here we reanalyze the correlation between this star formation history and the glaciation period record on Earth using a volume limited open cluster sample. Numerical modeling and recent observational data indicate that the correlation is rather strong but only if open clusters within 1.5 kpc from the Sun are considered. Under this constraint, our statistical analysis not only suggests a strong correlation in the timing of the events (enhanced star formation and glaciation episodes), but also in the severity and length of the episodes. In particular, the snowball Earth scenario appears to be connected with the strongest episode of enhanced star formation recorded in the Solar Neighbourhood during the last 2 Gyr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.