Abstract
The properties of isolated neutral oxygen vacancies and divacancies of metal oxides of increasing complexity (MgO, CaO, alpha-Al2O3, and ZnO) have been studied by means of density-functional theory within a supercell periodic approach. Vacancy formation energies, vacancy-vacancy interactions, and geometry rearrangements around these point defects have been investigated in detail. The characterization of the electronic structure of these point defects has been established by analysis of the density of states and of the topology of the electron density and of electron localization function. It is found that the chemical character of the oxide determines the properties of the oxygen vacancies. For the covalent ZnO oxide, a more complex scheme arises in which the relaxation around the oxygen vacancy is much larger leading to the formation of Zn4-like almost metallic particles in the crystal. The relationship of these structures with the crystal shear planes is discussed. The present study shows that supercells containing approximately 200-300 atoms provide converged values for the geometric and electronic structure of oxygen vacancies of these metal oxides in the point defect low concentration limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.