Abstract

The authors consider systems of the form where the matrix A(u) is assumed to be strictly hyperbolic and with the property that the integral curves of the eigenvector fields are straight lines. For this class of systems one can define a natural Riemann solver, and hence a Godunov scheme, which generalize the standard Riemann solver and Godunov scheme for conservative systems. This paper shows convergence and L1 stability for this scheme when applied to data with small total variation. The main step in the proof is to estimate the increase in the total variation produced by the scheme due to quadratic coupling terms. Using Duhamel's principle, the problem is reduced to the estimate of the product of two Green kernels, representing probability densities of discrete random walks. The total amount of coupling is then determined by the expected number of crossings between two random walks with strictly different average speeds. This provides a discrete analogue of the arguments developed in [3,9] in connection with continuous random processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.